Improved protein function opens way for new drug development concept

0

Credit: CC0 Public Domain

Researchers at Karolinska Institutet and SciLifeLab in Sweden describe in a study published in Science how they have improved the ability of a protein to repair oxidative DNA damage and created a new protein function. Their innovative technique could lead to improved drugs for diseases involving oxidative stress, such as cancer, Alzheimer’s disease and lung diseases, but the researchers believe it has even greater potential.

Drug development has long been based on finding specific pathogenic proteins and creating treatments that involve blocking these proteins in various ways. However, many diseases are caused by a loss of or decrease in protein function, which cannot be directly targeted by using inhibitors.

In the current study, researchers from Karolinska Institutet improved the function of a protein called OGG1, an enzyme that repairs oxidative DNA damage, implicated in aging and diseases such as Alzheimer’s disease, cancer, obesity, cardiovascular diseases, autoimmune diseases and lung diseases.

To conduct their research, the group used a method called organocatalysis, a tool developed by Benjamin List and David W.C. MacMillan who were awarded the 2021 Nobel Prize in Chemistry. The method is based on the discovery that small organic molecules can serve as catalysts and induce chemical reactions without themselves being part of the final product.

The researchers examined how such catalyst molecules, previously described by others, bind to OGG1 and affect its function in cells. One of the molecules proved to be of particular interest.

10 times more effective

“When we introduce the catalyst into the enzyme, the enzyme becomes ten times more effective at repairing oxidative DNA damage and can perform a new repair function,” says the study’s first author Maurice Michel, assistant professor at the Department of Oncology-Pathology, Karolinska Institutet.

The catalyst made it possible for the enzyme to cut the DNA in an unusual way so that it no longer requires its regular protein APE1 to work but another protein called PNKP1.

The researchers believe that OGG1 proteins improved in this way can form new drugs for diseases in which oxidative damage is implicated. However, Professor Thomas Helleday at the Department of Oncology-Pathology, Karolinska Institutet and the study’s last author also sees broader applications, where the concept of adding a small catalyst molecule to a protein is used to improve and change other proteins as well.

“We believe that this technology could instigate a paradigm shift in the pharmaceutical industry, whereby new protein functions are generated instead of being suppressed by inhibitors,” says Thomas Helleday. “But the technique isn’t limited to drugs. The applications are virtually unlimited.”


New inflammation inhibitor discovered


More information:
Maurice Michel et al, Small molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function, Science (2022). DOI: 10.1126/science.abf8980. www.science.org/doi/10.1126/science.abf8980

Provided by
Karolinska Institutet


Citation:
Improved protein function opens way for new drug development concept (2022, June 23)
retrieved 23 June 2022
from https://phys.org/news/2022-06-protein-function-drug-concept.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

FOLLOW US ON GOOGLE NEWS

 

Read original article here

Denial of responsibility! Samachar Central is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment