Simple model systems reveal conserved mechanisms of Alzheimer’s disease and related tauopathies | Molecular Neurodegeneration

  • Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44.

  • Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet. 2014;5:279.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation Induces Self-Assembly of Tau into Tangles of Paired Helical Filaments/Straight Filaments. Proc Natl Acad Sci USA. 2001;98(12):6923–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez J, Alvarez-Illera P, Santo-Domingo J, Fonteriz RI, Montero M. Modeling Alzheimer’s Disease in Caenorhabditis elegans. Biomedicines. 2022; 10(2).

  • Annunziata I, Patterson A, Helton D, Hu H, Moshiach S, et al. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat Commun. 2013;4:2734.

    PubMed 

    Google Scholar
     

  • Antonova Simona V, et al. Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly. Nat Struct Mol Biol. 2018;25(12):1119–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arber C, Toombs J, Lovejoy C, Ryan NS, Paterson RW, Willumsen N, Gkanatsiou E, et al. Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry. 2020;25(11):2919–31.

    PubMed 

    Google Scholar
     

  • Astarita G, Jung K-M, Vasilevko V, Dipatrizio NV, Martin SK, et al. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS One. 2011;6(10):e24777.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagriantsev S, Liebman S. Modulation of Abeta42 low-n oligomerization using a novel yeast reporter system. BMC Biol. 2006;4:32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baik IH, Jo G-H, Seo D, Ko MJ, Cho CH, et al. Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis. Int J Oncol. 2016;49(5):1953–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Bao W-D, Pang P, Zhou X-T, Hu F, Xiong W, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021;28(5):1548–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardai FH, Ordonez DG, Bailey RM, Hamm M, Lewis J, Feany MB. Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biol. 2018;16(12):e2006265.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baughman HER, Clouser AF, Klevit RE, Nath A. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation. J Biol Chem. 2018;293(8):2687–700.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO J. 2022;41(16):e110410.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Björkdahl C, Sjögren MJ, Zhou X, Concha H, Avila J, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res. 2008;86(6):1343–52.

    PubMed 

    Google Scholar
     

  • Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet. 2007;16(5):555–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.

    PubMed 

    Google Scholar
     

  • Bonet-Costa V, Pomatto LC-D, Davies KJA. The proteasome and oxidative stress in alzheimer’s disease. Antioxid Redox Signal. 2016;25(16):886–901.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer Disease-Associated Neurofibrillary Pathology Using Paraffin Sections and Immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules (Basel, Switzerland). 2020;25(24)5789. https://doi.org/10.3390/molecules25245789.

  • Brandt R, Gergou A, Wacker I, Fath T, Hutter H. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging. 2009;30(1):22–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C. Assembly and Aggregation Properties of Synthetic Alzheimer’s A4/Beta Amyloid Peptide Analogs. J Biol Chem. 1992;267(1):546–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N, Martinez P, Partridge L. Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci Rep. 2016;6:23102.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cacho-Valadez B, Muñoz-Lobato F, Pedrajas JR, Cabello J, Fierro-González JC, et al. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in β-amyloid peptide toxicity. Antioxid Redox Signal. 2012;16(12):1384–400.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caine J, Sankovich S, Antony H, Waddington L, Macreadie P, et al. Alzheimer’s Abeta fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Res. 2007;7(8):1230–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Caldeira GL, Ferreira IL, Rego AC. Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimers Dis. 2013;34(1):115–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A, et al. Heat shock proteins in alzheimer’s disease: role and targeting. Int J Mol Sci. 2018;19(9):2603. https://doi.org/10.3390/ijms19092603.

  • Cao W, Song H-J, Gangi T, Kelkar A, Antani I, et al. Identification of novel genes that modify phenotypes induced by Alzheimer’s beta-amyloid overexpression in Drosophila. Genetics. 2008;178(3):1457–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener. 2018;13(1):51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carmine-Simmen K, Proctor T, Tschäpe J, Poeck B, Triphan T, et al. Neurotoxic effects induced by the Drosophila amyloid-beta peptide suggest a conserved toxic function. Neurobiol Dis. 2009;33(2):274–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P. The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet. 2011;20(11):2144–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caspersen C, Wang N, Yao J, Sosunov A, Chen X, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19(14):2040–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Cassar M, Kretzschmar D. Analysis of amyloid precursor protein function in drosophila melanogaster. Front Mol Neurosci. 2016;9:61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha M-Y, Cho HJ, Kim C, Jung YO, Kang MJ, et al. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer’s disease. Hum Mol Genet. 2015;24(22):6492–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. Neurodegener Dis. 2012;9(2):68–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Chanu SI, Sarkar S. Targeted downregulation of dMyc suppresses pathogenesis of human neuronal tauopathies in drosophila by limiting heterochromatin relaxation and tau hyperphosphorylation. Mol Neurobiol. 2017;54(4):2706–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Chatterjee S, Ambegaokar SS, Jackson GR, Mudher A. Insulin-mediated changes in tau hyperphosphorylation and autophagy in a drosophila model of tauopathy and neuroblastoma cells. Front Neurosci. 2019;13:801.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Guo K, Kastan MB. Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J Biol Chem. 2012;287(20):16467–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Bisschops MMM, Agarwal NR, Ji B, Shanmugavel KP, Petranovic D. Interplay of energetics and ER stress exacerbates Alzheimer’s Amyloid-β (Aβ) toxicity in yeast. Front Mol Neurosci. 2017;10:232.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Ji B, Hao X, Li X, Eisele F, et al. FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun. 2020;11(1):867.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Petranovic D. Amyloid-β peptide-induced cytotoxicity and mitochondrial dysfunction in yeast. FEMS Yeast Res. 2015;15(6):fov61.

  • Chen X-F, Zhang Y, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer’s disease. Mol Brain. 2013;6(1):1–9.

  • Cheng J, North BJ, Zhang T, Dai X, Tao K, et al. The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell. 2018;17(5):e12801.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chew YL, Fan X, Götz J, Nicholas HR. PTL-1 regulates neuronal integrity and lifespan in C. elegans. J Cell Sci. 2013;126(Pt 9):2079–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chikka MR, Anbalagan C, Dvorak K, Dombeck K, Prahlad V. The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective. Cell Rep. 2016;16(9):2399–414.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conte D, MacNeil LT, Walhout AJM, Mello CC. RNA Interference in Caenorhabditis elegans. Curr Protoc Mol Biol. 2015;109:26.3.1-26.3.30.

    PubMed 

    Google Scholar
     

  • Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S, Arabyan T, Rabie J, Soh J, Walker DW. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol. 2009;19(19):1591–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. The genetic landscape of a cell. Science. 2010;327:425–31.

  • Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, et al. Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience. 2005;132(1):123–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Cui YH, Le Y, Zhang X, Gong W, Abe K, et al. Up-regulation of FPR2, a chemotactic receptor for amyloid beta 1–42 (A beta 42), in murine microglial cells by TNF alpha. Neurobiol Dis. 2002;10(3):366–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Culetto E, Sattelle DB. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet. 2000;9:869–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Cummins, N., Tweedie, A., Zuryn, S., Bertran-Gonzalez, J., & Götz, J. Disease-associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO J. 2019; 38(3). https://doi.org/10.15252/embj.201899360.

  • D’Angelo F, Vignaud H, Di Martino J, Salin B, Devin A, et al. A yeast model for amyloid-β aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis Model Mech. 2013;6(1):206–16.

    PubMed 

    Google Scholar
     

  • De Mena L, Chhangani D, Fernandez-Funez P, Rincon-Limas DE. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids. Fly (Austin). 2017;11(3):179–84.

    PubMed 

    Google Scholar
     

  • De Vos A, Bynens T, Rosseels J, Coun C, Ring J, et al. The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease. AIMS Mol Sci. 2015;2(2):144–60.

    CAS 

    Google Scholar
     

  • Derf A, Mudududdla R, Bharate SB, Chaudhuri B. Inhibitors of Aβ42-induced endoplasmic reticular unfolded protein response (UPRER), in yeast, also rescue yeast cells from Aβ42-mediated apoptosis. Eur J Pharm Sci. 2019;128:118–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest. 2007;117(1):236–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Dickson JR, Yoon H, Frosch MP, Hyman BT. Cytoplasmic mislocalization of RNA polymerase II subunit RPB1 in alzheimer disease is linked to pathologic tau. J Neuropathol Exp Neurol. 2021;80(6):530–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding Q, Markesbery WR, Chen Q, Li F, Keller JN. Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci. 2005;25(40):9171–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J Alzheimers Dis. 2010;19(2):681–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Dostal V, Link CD. Assaying β-amyloid toxicity using a transgenic C. elegans model. J Vis Exp. 2010;9(44):e2252.

  • Dou Y, Tan Y. Presequence protease reverses mitochondria-specific amyloid-β-induced mitophagy to protect mitochondria. FASEB J. 2023;37:e22890.

    CAS 
    PubMed 

    Google Scholar
     

  • Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. 2017;22(6):874–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging. 2003;24(3):415–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, et al. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem. 1995;270(13):7679–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133:155–75.

  • DuBoff B, Götz J, Feany MB. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron. 2012;75:618–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci. 2018;29(3):241–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Duennwald ML, Echeverria A, Shorter J. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol. 2012;10(6):e1001346.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugan JM, deWit C, McConlogue L, Maltese WA. The Ras-related GTP-binding protein, Rab1B, regulates early steps in exocytic transport and processing of beta-amyloid precursor protein. J Biol Chem. 1995;270(18):10982–9.

    CAS 
    PubMed 

    Google Scholar
     

  • EL Zhou T, Koh S, Chuang M, Sharma R, et al. An antimicrobial peptide and its neuronal receptor regulate dendrite degeneration in aging and infection. Neuron. 2018;97(1):125-138.e5.

    PubMed 

    Google Scholar
     

  • Eid R, Sheibani S, Gharib N, Lapointe JF, Horowitz A, Vali H, Mandato CA, Greenwood MT. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast. FEMS Yeast Res. 2014;14(3):495–507.

    CAS 
    PubMed 

    Google Scholar
     

  • Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics. 2021;218(4):iyab072.

  • Esposito M, Sherr GL. Epigenetic modifications in alzheimer’s neuropathology and therapeutics. Front Neurosci. 2019;13:476.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans HT, Benetatos J, van Roijen M, Bodea L-G, Götz J. Decreased synthesis of ribosomal proteins in tauopathy revealed by non-canonical amino acid labelling. EMBO J. 2019;38(13):e101174.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans HT, Taylor D, Kneynsberg A, Bodea L-G, Götz J. Altered ribosomal function and protein synthesis caused by tau. Acta Neuropathol Commun. 2021;9(1):110.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewald CY, Raps DA, Li C. APL-1, the Alzheimer’s Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development. Genetics. 2012;191(2):493–507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang C-Y, Lai T-C, Hsiao M, Chang Y-C. The diverse roles of TAO kinases in health and diseases. Int J Mol Sci. 2020;21(20):7463.

  • Fay DS, Fluet A, Johnson CJ, Link CD. In vivo aggregation of beta-amyloid peptide variants. J Neurochem. 1998;71(4):1616–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng J, Bussière F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell. 2001;1(5):633–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Finelli A, Kelkar A, Song H-J, Yang H, Konsolaki M. A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004;26(3):365–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD. Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy. 2007;3(6):569–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D, Darling A, Trotter JH, Stothert AR, Nordhues BA, Lussier A, Baker J, Shelton L, Kahn M, Blair LJ, Stevens SM Jr, Dickey CA. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J. 2016;35(14):1537–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonte V, Kapulkin WJ, Taft A, Fluet A, Friedman D, Link CD. Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA. 2002;99(14):9439–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonte V, Kipp DR, Yerg J, Merin D, Forrestal M, et al. Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem. 2008;283(2):784–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Fortini ME, Skupski MP, Boguski MS, Hariharan IK. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol. 2000;150:F23–30.

  • França MB, Lima KC, Eleutherio ECA. Oxidative stress and amyloid toxicity: insights from yeast. J Cell Biochem. 2017;118(6):1442–52.

    PubMed 

    Google Scholar
     

  • Freeman MR. Drosophila central nervous system glia. Cold Spring Harb Perspect Biol. 2015;7(11):a020552.

  • Fribley A, Zhang K, Kaufman RJ. Regulation of apoptosis by the unfolded protein response. Methods Mol Biol. 2009;559:191–204.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fruhmann G, Marchal C, Vignaud H, Verduyckt M, Talarek N, et al. The Impact of ESCRT on Aβ1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer’s Disease. Front Mol Neurosci. 2018;11:406.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 2007;9(2):139–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Gagliano SA, Pouget JG, Hardy J, Knight J, Barnes MR, et al. Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. Ann Clin Transl Neurol. 2016;3(12):924–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Esparcia P, Sideris-Lampretsas G, Hernandez-Ortega K, Grau-Rivera O, Sklaviadis T, et al. Altered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model. Am J Neurodegener Dis. 2017;6(2):15–25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrido-Maraver J, Loh SHY, Martins LM. Forcing contacts between mitochondria and the endoplasmic reticulum extends lifespan in a Drosophila model of Alzheimer’s disease. Biol Open. 2020;9(1):bio047530.

  • GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80.


    Google Scholar
     

  • Giacomini C, Koo C-Y, Yankova N, Tavares IA, Wray S, et al. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol Commun. 2018;6(1):37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418(6896):387–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Giralt A, de Pins B, Cifuentes-Díaz C, López-Molina L, Farah AT, et al. PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer’s disease. Exp Neurol. 2018;307:62–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Godini R, Pocock R, Fallahi H. Caenorhabditis elegans hub genes that respond to amyloid beta are homologs of genes involved in human Alzheimer’s disease. PLoS One. 2019;14(7):e0219486.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy JA, Rios JA, Zolezzi JM, Braidy N, Inestrosa NC. Signaling pathway cross talk in Alzheimer’s disease. Cell Commun Signal. 2014;12:23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, et al. Life with 6000 genes. Science. 1996;274(5287):546, 563–7.

    PubMed 

    Google Scholar
     

  • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426(6968):895–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Götz J, Gladbach A, Pennanen L, van Eersel J, Schild A, David D, Ittner LM. Animal models reveal role for tau phosphorylation in human disease. Biochem Biophys Acta. 2010;1802:860–71.

    PubMed 

    Google Scholar
     

  • Götz JJ, Götz J. Experimental Models of Tauopathy – From Mechanisms to Therapies. Adv Exp Med Biol. 2019;1184:381–91.

  • Gray JP, Davis JW, Gopinathan L, Leas TL, Nugent CA, Vanden Heuvel JP. The ribosomal protein rpL11 associates with and inhibits the transcriptional activity of peroxisome proliferator-activated receptor-alpha. Toxicol Sci. 2006;89(2):535–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Greeve I, Kretzschmar D, Tschäpe J-A, Beyn A, Brellinger C, et al. Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci. 2004;24(16):3899–906.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grune T, Jung T, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and “aggresomes” during oxidative stress, aging, and disease. Int J Biochem Cell Biol. 2004;36(12):2519–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Grupe A, Williams J. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Gen. 2007;16(8):865–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Gu Q, Cuevas E, Raymick J, Kanungo J, Sarkar S. Downregulation of 14-3-3 Proteins in Alzheimer’s Disease. Mol Neurobiol. 2020;57(1):32–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Gunawardana CG, Mehrabian M, Wang X, Mueller I, Lubambo IB, Jonkman JEN, Wang H, Schmitt-Ulms G. The Human Tau Interactome: Binding to the Ribonucleoproteome, and Impaired Binding of the Proline-to-Leucine Mutant at Position 301 (P301L) to Chaperones and the Proteasome. Mol Cell Proteomics. 2015;14(11):3000–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guthrie CR, Schellenberg GD, Kraemer BC. SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet. 2009;18(10):1825–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliday M, Radford H, Zents KAM, Molloy C, Moreno JA, et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain. 2017;140(6):1768–83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, et al. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 2005;19:1544–55.

  • Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992;147:58–62.

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32(Database issue):D258-61.

    CAS 
    PubMed 

    Google Scholar
     

  • Hassan A, Scott H, Hill M. Regulation of microglial transcription factor MEF2C by Alzheimer’s disease‐relevant stimuli. Alzheimers Dement. 2021;17(S3):05748.

  • Hassan WM, Dostal V, Huemann BN, Yerg JE, Link CD. Identifying Aβ-specific pathogenic mechanisms using a nematode model of Alzheimer’s disease. Neurobiol Aging. 2015;36(2):857–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Hassan WM, Merin DA, Fonte V, Link CD. AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model. Hum Mol Genet. 2009;18(15):2739–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hefti MM, Farrell K, Kim S, Bowles KR, Fowkes ME, Raj T, Crary JF. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development. PLoS One. 2018;13:e0195771.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hensley K, Hall N, Subramaniam R, Cole P, Harris M, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65(5):2146–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Hernández-Ortega K, Garcia-Esparcia P, Gil L, Lucas JJ, Ferrer I. Altered machinery of protein synthesis in alzheimer’s: from the nucleolus to the ribosome. Brain Pathol. 2016;26(5):593–605.

    PubMed 

    Google Scholar
     

  • Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 2014;15(4):233–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho GJ, Drego R, Hakimian E, Masliah E. Mechanisms of cell signaling and inflammation in Alzheimer’s disease. Curr Drug Targets Inflamm Allergy. 2005;4(2):247–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Holdorf AD, Higgins DP, Hart AC, Boag PR, Pazour GJ, et al. WormCat: an online tool for annotation and visualization of caenorhabditis elegans genome-scale data. Genetics. 2020;214(2):279–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Hoozemans JJM, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, et al. The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. 2005;110(2):165–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, et al. APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci USA. 2007;104(6):1971–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoshino T, Murao N, Namba T, Takehara M, Adachi H, et al. Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci. 2011;31(14):5225–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Wang Z, Zheng H. Mitochondrial accumulation of amyloid β (Aβ) peptides requires TOMM22 as a main Aβ receptor in yeast. J Biol Chem. 2018;293(33):12681–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Comjean A, Perkins LA, Perrimon N, Mohr SE. GLAD: an online database of gene list annotation for drosophila. J Genomics. 2015;3:75–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang J, Chen S, Hu L, Niu H, Sun Q, et al. Mitoferrin-1 is Involved in the Progression of Alzheimer’s Disease Through Targeting Mitochondrial Iron Metabolism in a Caenorhabditis elegans Model of Alzheimer’s Disease. Neuroscience. 2018;385:90–101.

    CAS 
    PubMed 

    Google Scholar
     

  • Husseman JW, Hallows JL, Bregman DB, Leverenz JB, Nochlin D, et al. Hyperphosphorylation of RNA polymerase II and reduced neuronal RNA levels precede neurofibrillary tangles in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60(12):1219–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Iijima K, Iijima-Ando K. Drosophila models of Alzheimer’s amyloidosis: the challenge of dissecting the complex mechanisms of toxicity of amyloid-beta 42. J Alzheimers Dis. 2008;15(4):523–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Iijima K, Liu H-P, Chiang A-S, Hearn SA, Konsolaki M, Zhong Y. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101(17):6623–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iijima-Ando K, Sekiya M, Maruko-Otake A, Ohtake Y, Suzuki E, Lu B, Iijima KM. Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1. PLoS Genet. 2012;8(8):e1002918.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingram EM, Spillantini MG. Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med. 2002;8:555–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron. 2002;34(4):509–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol. 2018;168:104–27.

    PubMed 

    Google Scholar
     

  • Jeon Y, Lee JH, Choi B, Won S-Y, Cho KS. Genetic dissection of alzheimer’s disease using drosophila models. Int J Mol Sci. 2020;21(3):884.

  • Jiang Y, Di Gregorio SE, Duennwald ML, Lajoie P. Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions. Traffic. 2017;18(1):58–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones MW, Errington ML, French PJ, Fine A, Bliss TV, et al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci. 2001;4(3):289–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones SV, Kounatidis I. Nuclear Factor-Kappa B and Alzheimer Disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol. 2017;8:1805.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368:107–16.

  • Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007;292(2):C641–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Karagöz GE, Duarte AMS, Akoury E, Ippel H, Biernat J, Morán Luengo T, et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell. 2014;156:963–74.

  • Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiat. 2015;77:43–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Kawai M, Cras P, Richey P, Tabaton M, Lowery DE, et al. Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am J Pathol. 1992;140(4):947–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelleher RJ, Shen J. Presenilin-1 mutations and Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114(4):629–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khabirova E, Moloney A, Marciniak SJ, Williams J, Lomas DA, et al. The TRiC/CCT chaperone is implicated in Alzheimer’s disease based on patient GWAS and an RNAi screen in Aβ-expressing Caenorhabditis elegans. PLoS One. 2014;9(7):e102985.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci. 2018;30(1):9–30.

    PubMed 

    Google Scholar
     

  • Kim J, de Haro M, Al-Ramahi I, Garaicoechea LL, Jeong H-H, Sonn JY, Zoghbi HY. Evolutionarily conserved regulators of tau identify targets for new therapies. Neuron. 2023;111:824-838.e7.

    CAS 
    PubMed 

    Google Scholar
     

  • Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:575–90.

    PubMed 

    Google Scholar
     

  • Kocahan S, Doğan Z. Mechanisms of Alzheimer’s Disease pathogenesis and prevention: the brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci. 2017;15(1):1–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong W, Mou X, Liu Q, Chen Z, Vanderburg CR, et al. Independent component analysis of Alzheimer’s DNA microarray gene expression data. Mol Neurodegener. 2009;4:5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren SA, Hamm MJ, Meier SE, Weiss BE, Nation GK, Chishti EA, Arango JP, Chen J, Zhu H, Blalock EM, Abisambra JF. Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol. 2019;137(4):571–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kouli A, Torsney KM, Kuan W-L. 2018. Parkinson’s disease: etiology, neuropathology, and pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects, eds. TB Stoker, JC Greenland. Brisbane (AU): Codon Publications

  • Kovacs GG. Tauopathies. Handb Clin Neurol. 2017;145:355–68.

    PubMed 

    Google Scholar
     

  • Kow RL, Sikkema C, Wheeler JM, Wilkinson CW, Kraemer BC. DOPA decarboxylase modulates tau toxicity. Biol Psychiatry. 2018;83(5):438–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Kow RL, Strovas TJ, McMillan PJ, Jacobi AM, Behlke MA, et al. Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiol Dis. 2021;147:105148.

    CAS 
    PubMed 

    Google Scholar
     

  • Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD. Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet. 2006;15(9):1483–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Kraemer BC, Schellenberg GD. SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet. 2007;16(16):1959–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA. 2003;100(17):9980–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuksa PP, Liu C-L, Fu W, Qu L, Zhao Y, Katanic Z, Leung YY. Alzheimer’s disease variant portal: A catalog of genetic findings for alzheimer’s disease. J Alzheimer’s Dis. 2022;86:461–77.

    CAS 

    Google Scholar
     

  • Kwak SS, Washicosky KJ, Brand E, von Maydell D, Aronson J, Kim S, Kim DY. Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer’s disease. Nat Commun. 2020;11:1377.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy W-Y, et al. The hsp70/hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci. 2017;11:25.


    Google Scholar
     

  • Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10:703–13.

  • Lambert JC, Zelenika D, Hiltunen M, Chouraki V, Combarros O, Bullido MJ, Tognoni G, Fiévet N, Boland A, Arosio B, Coto E, Del Zompo M, Mateo I, Frank-Garcia A, Helisalmi S, Porcellini E, Pilotto A, Forti P, Ferri R, Amouyel P. Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiol Aging. 2011;32(4):756.e11-e756.e15. https://doi.org/10.1016/j.neurobiolaging.2010.11.022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal. 2014;8(4):293–310.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JK, Kim N-J. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of alzheimer’s disease. Molecules. 2017;22(8):1287.

  • Lee K-S, Huh S, Lee S, Wu Z, Kim A-K, et al. Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci USA. 2018;115(38):E8844–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2003;33(1):40–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17:157–72.

    PubMed 

    Google Scholar
     

  • Li X-L, Hu N, Tan M-S, Yu J-T, Tan L. Behavioral and psychological symptoms in Alzheimer’s disease. Biomed Res Int. 2014;2014:927804.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, et al. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol. 2000;103(1):97–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Limone A, Veneruso I, D’Argenio V, Sarnataro D. Endosomal trafficking and related genetic underpinnings as a hub in Alzheimer’s disease. J Cell Physiol. 2022;237(10):3803–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling D, Magallanes M, Salvaterra PM. Accumulation of amyloid-like Aβ1–42 in AEL (autophagy-endosomal-lysosomal) vesicles: potential implications for plaque biogenesis. ASN Neuro. 2014;6(2):AN20130044.

  • Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA. 1995;92(20):9368–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–18.

  • Liu L, Wu Q, Zhong W, Chen Y, Zhang W, et al. Microarray Analysis of Differential Gene Expression in Alzheimer’s Disease Identifies Potential Biomarkers with Diagnostic Value. Med Sci Monit. 2020;26:e919249.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Zhang J. Lipid metabolism in Alzheimer’s disease. Neurosci Bull. 2014;30(2):331–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loewen CA, Feany MB. The unfolded protein response protects from tau neurotoxicity in vivo. PLoS One. 2010;5(9):e13084.

  • Loh KP, Huang SH, De Silva R, Tan BKH, Zhu YZ. Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res. 2006;3(4):327–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Lotz M, Ebert S, Esselmann H, Iliev AI, Prinz M, et al. Amyloid beta peptide 1–40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J Neurochem. 2005;94(2):289–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo JM, et al. Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol. 1994;4:1077–86.

  • Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8(11):904–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 2001;20:27–39.

  • Lye SH, Chtarbanova S. Drosophila as a model to study brain innate immunity in health and disease. Int J Mol Sci. 2018;19(12):3922.

  • Magrané J, Smith RC, Walsh K, Querfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci. 2004;24(7):1700–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15(9):1437–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Mangione MR, Vilasi S, Marino C, Librizzi F, Canale C, et al. Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta. 2016;1860(11):2474–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol. 1998;150(1):40–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Menárguez JÁ, Martínez-Alonso E, Cara-Esteban M, Tomás M. Focus on the small gtpase rab1: A key player in the pathogenesis of parkinson’s disease. Int J Mol Sci. 2021;22(21):12087.

  • Martín-Peña A, Rincón-Limas DE, Fernandez-Fúnez P. Engineered Hsp70 chaperones prevent Aβ42-induced memory impairments in a Drosophila model of Alzheimer’s disease. Sci Rep. 2018;8(1):9915.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, et al. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology. 2017;123:465–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matlack KES, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, et al. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci USA. 2014;111(11):4013–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maulik M, Mitra S, Basmayor AM, Lu B, Taylor BE, Bult-Ito A. Genetic Silencing of Fatty Acid Desaturases Modulates α-Synuclein Toxicity and Neuronal Loss in Parkinson-Like Models of C. elegans. Front Aging Neurosci. 2019;11:207.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzulli JR, Zunke F, Isacson O, Studer L, Krainc D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA. 2016;113(7):1931–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Mcdonald J, Dhakal S, Macreadie I. Yeast contributions to Alzheimer’s Disease. J Human Clin Gen. 2020;2(2):1–19.


    Google Scholar
     

  • Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol. 1994;36(5):747–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Meier S, Bell M, Lyons DN, Rodriguez-Rivera J, Ingram A, Fontaine SN, Mechas E, Chen J, Wolozin B, LeVine H 3rd, Zhu H, Abisambra JF. Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis. J Neurosci. 2016;36(3):1001–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merlo P, Frost B, Peng S, Yang YJ, Park PJ, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci USA. 2014;111(50):18055–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, et al. Microglia in Alzheimer’s disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci. 2023;15:1201982.

  • Miyasaka T, Ding Z, Gengyo-Ando K, Oue M, Yamaguchi H, et al. Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis. 2005;20(2):372–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Moltedo O, Remondelli P, Amodio G. The Mitochondria-endoplasmic reticulum contacts and their critical role in aging and age-associated diseases. Front Cell Dev Biol. 2019;7:172.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802(1):2–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Mosconi L, de Leon M, Murray J E L, Lu J, et al. Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer’s disease. J Alzheimers Dis. 2011;27(3):483–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc Natl Acad Sci U SA. 2021;118(52):e2112095118.

  • Mukherjee S, Russell JC, Carr DT, Burgess JD, Allen M, et al. Systems biology approach to late-onset Alzheimer’s disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments. Alzheimers Dement. 2017;13(10):1133–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19(1):311–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nangia V, O’Connell J, Chopra K, Qing Y, Reppert C, et al. Genetic reduction of tyramine β hydroxylase suppresses Tau toxicity in a Drosophila model of tauopathy. Neurosci Lett. 2021;755:135937.

    CAS 
    PubMed 

    Google Scholar
     

  • Nassari S, Del Olmo T, Jean S. Rabs in signaling and embryonic development. Int J Mol Sci. 2020;21(3):1064.

  • Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev. 2018;50(2):95–108.

    CAS 
    PubMed 

    Google Scholar
     

  • Niki E. Lipid peroxidation products as oxidative stress biomarkers. BioFactors. 2008;34(2):171–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 2013;5(1):61–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Aβ peptide. BioEssays. 2014;36(6):570–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nisha, Sarkar S. Downregulation of glob1 suppresses pathogenesis of human neuronal tauopathies in Drosophila by regulating tau phosphorylation and ROS generation. Neurochem Int. 2021;146:105040.

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60(8):759–67.

    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien KP, Westerlund I, Sonnhammer ELL. OrthoDisease: a database of human disease orthologs. Hum Mutat. 2004;24:112–9.

    PubMed 

    Google Scholar
     

  • Oddo S. The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med. 2008;12(2):363–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed). 2012;4:941–52.

    PubMed 

    Google Scholar
     

  • Ojala J, Alafuzoff I, Herukka S-K, van Groen T, Tanila H, Pirttilä T. Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging. 2009;30(2):198–209.

    CAS 
    PubMed 

    Google Scholar
     

  • Ojelade SA, Lee TV, Giagtzoglou N, Yu L, Ugur B, et al. cindr, the Drosophila Homolog of the CD2AP Alzheimer’s Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Rep. 2019;28(7):1799-1813.e5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, et al. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem. 2017;162(5):335–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omata Y, Lim Y-M, Akao Y, Tsuda L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am J Neurodegener Dis. 2014;3(3):134–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orr ME, Sullivan AC, Frost B. A brief overview of tauopathy: causes, consequences, and therapeutic strategies. Trends Pharmacol Sci. 2017;38(7):637–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagani L, Eckert A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis. 2011;2011:925050.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer AM, Burns MA. Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res. 1994;645(1–2):338–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, et al. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer’s Disease Progression in Caenorhabditis elegans and Neuronal Cultures. Antioxid Redox Signal. 2016;25(16):855–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park MH, Park KH, Choi BJ, Han WH, Yoon HJ, et al. Discovery of a dual-action small molecule that improves neuropathological features of Alzheimer’s disease mice. Proc Natl Acad Sci USA. 2022;119(3):e2115082119.

  • Park S-K, Ratia K, Ba M, Valencik M, Liebman SW. Inhibition of Aβ42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs. Microb Cell. 2016;3(2):53–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SY, Seo J, Chun YS. Targeted Downregulation of kdm4a Ameliorates Tau-engendered Defects in Drosophila melanogaster. J Korean Med Sci. 2019;34(33):e225.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peña-Bautista C, Álvarez-Sánchez L, Cañada-Martínez AJ, Baquero M, Cháfer-Pericás C. Epigenomics and lipidomics integration in Alzheimer disease: pathways involved in early stages. Biomedicines. 2021;9(12):1812.

  • Penserga T, Kudumala SR, Poulos R, Godenschwege TA. A Role for Drosophila Amyloid Precursor Protein in Retrograde Trafficking of L1-Type Cell Adhesion Molecule Neuroglian. Front Cell Neurosci. 2019;13:322.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, Hutton M. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet. 2004;13:703–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Povellato G, Tuxworth RI, Hanger DP, Tear G. Modification of the Drosophila model of in vivo Tau toxicity reveals protective phosphorylation by GSK3β. Biol Open. 2014;3(1):1–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol. 2013;126(4):461–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Prüßing K, Voigt A, Schulz JB. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener. 2013;8:35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin X, Wang Y, Paudel HK. Inhibition of Early Growth Response 1 in the Hippocampus Alleviates Neuropathology and Improves Cognition in an Alzheimer Model with Plaques and Tangles. Am J Pathol. 2017;187(8):1828–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med. 2020;159:87–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Qureshi HY, Han D, MacDonald R, Paudel HK. Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One. 2013;8(12):e84615.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 2014;42(Suppl 3):S125–52.

    PubMed 

    Google Scholar
     

  • Reddy PH. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res. 2011;1415:136–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regitz C, Dußling LM, Wenzel U. Amyloid-beta (Aβ1-42)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res. 2014;58(10):1931–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Reisberg B, Ferris SH, de Leon MJ, Kluger A, Franssen E, Borenstein J, et al. The stage specific temporal course of Alzheimer’s disease: functional and behavioral concomitants based upon cross-sectional and longitudinal observation. Prog Clin Biol Res. 1989;317:23–41.

  • Rimal S, Li Y, Vartak R, Geng J, Tantray I, et al. Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):169.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ring J, Tadic J, Ristic S, Poglitsch M, Bergmann M, Radic N, Mossmann D, Liang Y, Maglione M, Jerkovic A, Hajiraissi R, Hanke M, Küttner V, Wolinski H, Zimmermann A, Domuz Trifunović L, Mikolasch L, Moretti DN, Broeskamp F, Madeo F. The HSP40 chaperone Ydj1 drives amyloid beta 42 toxicity. EMBO Mol Med. 2022;14(5):e13952.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, et al. Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur J Neurosci. 2009;29(7):1335–47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol (Lond). 2000;529(Pt 1):37–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson MD, Grigull J, Mohammad N, Hughes TR. FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics. 2002;3:35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutledge BS, Choy W-Y, Duennwald ML. Folding or holding?-Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J Biol Chem. 2022;298:101905.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan KC, Ashkavand Z, Norman KR. The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases. Int J Mol Sci. 2020;21(23):9153.

  • Safra M, Ben-Hamo S, Kenyon C, Henis-Korenblit S. The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C elegans. J Cell Sci. 2013;126(Pt 18):4136–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saido TC. Metabolism of amyloid β peptide and pathogenesis of Alzheimer’s disease. Proc Jpn Acad Ser B Phys Biol Sci. 2013;89(7):321–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar SV, Cox TO, Lee S, Brody AH, Chyung AS, et al. Alzheimer’s Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39(4):758–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog Neurobiol. 2011;93(1):99–110.

    CAS 
    PubMed 

    Google Scholar
     

  • Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87(3):181–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Salmon TB, Evert BA, Song B, Doetsch PW. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 2004;32(12):3712–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Younkin S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2:864–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol. 2000;18(12):1257–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, et al. Recent Insights on Alzheimer’s Disease Originating from Yeast Models. Int J Mol Sci. 2018;19(7):1947.

  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol. 2019;174:53–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Shim SM, Lee WJ, Kim Y, Chang JW, Song S, Jung Y-K. Role of S5b/PSMD5 in proteasome inhibition caused by TNF-α/NFκB in higher eukaryotes. Cell Rep. 2012;2(3):603–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Shukla S, Tekwani BL. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol. 2020;11:537.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shulman JM, Chipendo P, Chibnik LB, Aubin C, Tran D, et al. Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am J Hum Genet. 2011;88(2):232–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shulman JM, Feany MB. Genetic modifiers of tauopathy in Drosophila. Genetics. 2003;165(3):1233–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, Hu Y, et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet. 2014;23(4):870–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Silver I, Erecińska M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol. 1998;454:7–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Sinnige T, Ciryam P, Casford S, Dobson CM, de Bono M, Vendruscolo M. Expression of the amyloid-β peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response. PLoS One. 2019;14(5):e0217746.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son SJ, Lee KS, Chung JH, Chang KJ, Roh HW, et al. Increased plasma levels of heat shock protein 70 associated with subsequent clinical conversion to mild cognitive impairment in cognitively healthy elderly. PLoS One. 2015;10(3):e0119180.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorbi S, Bird ED, Blass JP. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol. 1983;13(1):72–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Sparvero LJ, Patz S, Brodsky JL, Coughlan CM. Proteomic analysis of the amyloid precursor protein fragment C99: expression in yeast. Anal Biochem. 2007;370(2):162–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spindler SR, Hartenstein V. The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol. 2010;220(1–2):1–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet. 2015;47:445–7.

  • Stokin GB, Goldstein LSB. Axonal transport and Alzheimer’s disease. Annu Rev Biochem. 2006;75:607–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Su B, Wang X, Lee H-G, Tabaton M, Perry G, et al. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett. 2010;468(3):267–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian M, Hyeon SJ, Das T, Suh YS, Kim YK, et al. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun. 2021;12(1):3291.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun E, Motolani A, Campos L, Lu T. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci. 2022;23(16):8972.

  • Swerdlow RH. Mitochondria and mitochondrial cascades in alzheimer’s disease. J Alzheimers Dis. 2018;62(3):1403–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tadic J, Ring J, Jerkovic A, Ristic S, Maglione M, Dengjel J, Sigrist SJ, Eisenberg T. A pathological role of the Hsp40 protein Ydj1/DnaJA1 in models of Alzheimer’s disease [Review of A pathological role of the Hsp40 protein Ydj1/DnaJA1 in models of Alzheimer’s disease]. Cell Stress Chaperones. 2022;6(5):61–4.

    CAS 

    Google Scholar
     

  • Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123(1):49–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Schedl P, Song H-J, Garza D, Konsolaki M. The Toll–>NFkappaB signaling pathway mediates the neuropathological effects of the human Alzheimer’s Abeta42 polypeptide in Drosophila. PLoS One. 2008;3(12):e3966.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, et al. An in vivo map of the yeast protein interactome. Science. 2008;320:1465–70.

  • Terai K, Matsuo A, McGeer PL. Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res. 1996;735(1):159–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L-P, Mi H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer’s disease. BMC Neurosci. 2016;17(1):50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM. Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis. 2006;3(4–5):207–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol. 2009;29(4):1095–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Treusch S, Hamamichi S, Goodman JL, Matlack KES, Chung CY, et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science. 2011;334(6060):1241–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet. 2006;2(11):e183.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troulinaki K, Tavernarakis N. Endocytosis and intracellular trafficking contribute to necrotic neurodegeneration in C. elegans. EMBO J. 2012;31(3):654–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Tsang WY, Lemire BD. Mitochondrial ATP synthase controls larval development cell nonautonomously in Caenorhabditis elegans. Dev Dynamics. 2003;226(4):719–26.

    CAS 

    Google Scholar
     

  • Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging. 2008;29(11):1607–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, et al. Autophagy and alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018;10:04.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulamec SM, Brockwell DJ, Radford SE. Looking beyond the core: the role of flanking regions in the aggregation of amyloidogenic peptides and proteins. Front Neurosci. 2020;14:611285.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unterberger U, Höftberger R, Gelpi E, Flicker H, Budka H, Voigtländer T. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol. 2006;65(4):348–57.

    CAS 
    PubMed 

    Google Scholar
     

  • van der Staay FJ, Rutten K, Bärfacker L, Devry J, Erb C, Heckroth H, Hendrix M. The novel selective PDE9 inhibitor BAY 73–6691 improves learning and memory in rodents. Neuropharmacology. 2008;55:908–18.

    CAS 
    PubMed 

    Google Scholar
     

  • van Heusden GPH, Steensma HY. Yeast 14-3-3 proteins. Yeast. 2006;23(3):159–71.

    CAS 
    PubMed 

    Google Scholar
     

  • van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, et al. Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science. 1998;279(5348):242–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Vanhelmont T, Vandebroek T, De Vos A, Terwel D, Lemaire K, et al. Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res. 2010;10(8):992–1005.

    CAS 
    PubMed 

    Google Scholar
     

  • Vergallo A, Giampietri L, Baldacci F, Volpi L, Chico L, et al. Oxidative stress assessment in alzheimer’s disease: a clinic setting study. Am J Alzheimers Dis Other Demen. 2018;33(1):35–41.

    PubMed 

    Google Scholar
     

  • Vérièpe J, Fossouo L, Parker JA. Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons. Nat Commun. 2015;6:7319.

    PubMed 

    Google Scholar
     

  • Waldherr SM, Strovas TJ, Vadset TA, Liachko NF, Kraemer BC. Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat Commun. 2019;10(1):4443.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan L, Nie G, Zhang J, Luo Y, Zhang P, et al. β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med. 2011;50(1):122–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Wan W, Xia S, Kalionis B, Liu L, Li Y. The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? Biomed Res Int. 2014;2014:301575.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol. 2008;173(2):470–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Wang W, Li L, Perry G, Lee H, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842(8):1240–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35(15):1656–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weickert S, Wawrzyniuk M, John LH, Rüdiger SGD, Drescher M. The mechanism of Hsp90-induced oligomerizaton of Tau. Sci Adv. 2020;6:eaax6999.

  • Wiese M, Antebi A, Zheng H. Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans. PLoS One. 2010;5(9):12790.

  • Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693–714.

    CAS 
    PubMed 

    Google Scholar
     

  • Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science. 2001;293(5530):711–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The novel role of PPAR alpha in the brain: promising target in therapy of alzheimer’s disease and other neurodegenerative disorders. Neurochem Res. 2020;45(5):972–88.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo J-AA, Liu T, Fang CC, Cazzaro S, Kee T, et al. Activated cofilin exacerbates tau pathology by impairing tau-mediated microtubule dynamics. Commun Biol. 2019;2:112.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Cao Z, Klein WL, Luo Y. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging. 2010;31(6):1055–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Q, Gil S-C, Yan P, Wang Y, Han S, Gonzales E, Perez R, Cirrito JR, Lee J-M. Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem. 2012;287(25):21279–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao X, Liu H, Liu X, Zhang W, Zhang S, Jiao B. APP, PSEN1, and PSEN2 Variants in Alzheimer’s Disease: Systematic Re-evaluation According to ACMG Guidelines. Front Aging Neurosci. 2021;13:695808.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu W, Tan L, Yu J-T. The role of PICALM in alzheimer’s disease. Mol Neurobiol. 2015;52(1):399–413.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic dysregulation contributes to the progression of alzheimer’s disease. Front Neurosci. 2020;14:530219.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, et al. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem. 2016;137(4):489–505.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu R, Nielsen J. Big data in yeast systems biology. FEMS Yeast Res. 2019;19(7):foz070.

  • Yu Y, Niccoli T, Ren Z, Woodling NS, Aleyakpo B, Szabadkai G, Partridge L. PICALM rescues glutamatergic neurotransmission, behavioural function and survival in a Drosophila model of Aβ42 toxicity. Hum Mol Genet. 2020;29(14):2420–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zambrano CA, Egaña JT, Núñez MT, Maccioni RB, González-Billault C. Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radic Biol Med. 2004;36(11):1393–402.

    CAS 
    PubMed 

    Google Scholar
     

  • Zarouchlioti C, Parfitt DA, Li W, Gittings LM, Cheetham ME. DNAJ Proteins in neurodegeneration: essential and protective factors. Philos. Trans R Soc Lond B Biol Sci. 2018;373(1738):20160534.

  • Zeng Q, Siu W, Li L, Jin Y, Liang S, et al. Autophagy in Alzheimer’s disease and promising modulatory effects of herbal medicine. Exp Gerontol. 2019;119:100–10.

    PubMed 

    Google Scholar
     

  • Zetterberg M, Sjölander A, von Otter M, Palmér MS, Landgren S, et al. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y polymorphism in Alzheimer’s disease. Mol Neurodegener. 2010;5:11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain. 2011;4:3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao R, Hu W, Tsai J, Li W, Gan W-B. Microglia limit the expansion of β-amyloid plaques in a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017;12(1):47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu X, Lee H, Raina AK, Perry G, Smith MA. The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals. 2002;11(5):270–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Zolkiewski M, Zhang T, Nagy M. Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys. 2012;520(1):1–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reference

    Denial of responsibility! Samachar Central is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment