Optimizing the thermophysical qualities of innovative clay–rGO composite bricks for sustainable applications

  • Wang, S. et al. Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. J. Build. Eng. 66, 105802 (2022).

    Article 

    Google Scholar
     

  • Srisuwan, A., Phonphuak, N., & Saengthong, C. Improvement of thermal insulating properties and porosity of fired clay bricks with addition of agricultural wastes. Suranaree J. Sci. Technol. 25(1), 49–58 (2018).

  • Maged, A., Abu El-Magd, S. A., Radwan, A. E., Kharbish, S. & Zamzam, S. Evaluation insight into Abu Zenima clay deposits as a prospective raw material source for ceramics industry: remote sensing and characterization. Sci. Rep. 13(1), 1–16. https://doi.org/10.1038/s41598-022-26484-5 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Samad, A. et al. Manufacture of refractory brick from locally available red clay blended with white Portland cement and its performance evaluation. Geomate J. 20(80), 105–112 (2021).


    Google Scholar
     

  • Tang, Z., Lu, D., Gong, J., Shi, X. & Zhong, J. Self-heating graphene nanocomposite bricks: A case study in China. Materials (Basel) 13(3), 714 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Refaey, Y., Jansen, B., El-Shater, A.-H., El-Haddad, A.-A. & Kalbitz, K. Clay minerals of Pliocene deposits and their potential use for the purification of polluted wastewater in the Sohag area, Egypt. Geoderma Reg. 5, 215–225 (2015).

    Article 

    Google Scholar
     

  • Akinwande, A. A., Adediran, A. A., Balogun, O. A., Olusoju, O. S. & Adesina, O. S. Influence of alkaline modification on selected properties of banana fiber paperbricks. Sci. Rep. 11(1), 1–18. https://doi.org/10.1038/s41598-021-85106-8 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zuraida, S., Dewancker, B. & Margono, R. B. Application of non-degradable waste as building material for low-cost housing. Sci. Rep. 13(1), 1–12. https://doi.org/10.1038/s41598-023-32981-y (2023).

    Article 
    CAS 

    Google Scholar
     

  • Soni, A., Das, P. K., Yusuf, M., Kamyab, H. & Chelliapan, S. Development of sand-plastic composites as floor tiles using silica sand and recycled thermoplastics: a sustainable approach for cleaner production. Sci. Rep. 12(1), 1–19. https://doi.org/10.1038/s41598-022-19635-1 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Q. Sun et al., Synthesis of a waterproof geopolymer adhesive applied in DUV LEDs packaging. Ceram. Int. https://doi.org/10.1016/j.ceramint.2023.08.142 (2023).

  • Sun, Q., Peng, Y., Georgolamprou, X., Li, D. & Kiebach, R. Synthesis and characterization of a geopolymer/hexagonal-boron nitride composite for free forming 3D extrusion-based printing. Appl. Clay Sci. 199, 105870 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, M. & Rashid, K. Novel approach to synthesize clay-based geopolymer brick: Optimizing molding pressure and precursors’ proportioning. Constr. Build. Mater. 322, 126472 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, N. J., Walsh, J. N. & Pegram, E. Geology, geochemistry and petrogenesis of late Precambrian granitoids in the central Hijaz region of the Arabian shield. Contrib. to Mineral. Petrol. 87, 205–219 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tao, Y., Huang, C., Lai, C., Huang, C. & Yong, Q. Biomimetic galactomannan/bentonite/graphene oxide film with superior mechanical and fire retardant properties by borate cross-linking. Carbohydr. Polym. 245(April), 116508. https://doi.org/10.1016/j.carbpol.2020.116508 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • A. J. Ajala and N. A. Badarulzaman, “Thermal conductivity of aloji fireclay as refractory material,” Int. J. Integr. Eng., vol. 8, no. 2, 2016.

  • Doubi, H. G., Kouamé, A. N., Konan, L. K., Tognonvi, M. & Oyetola, S. Thermal conductivity of compressed earth bricks strengthening by shea butter wastes with cement. Mater. Sci. Appl. 8(12), 848 (2017).

    CAS 

    Google Scholar
     

  • Badica, P. et al. Mud and burnt Roman bricks from Romula. Sci. Rep. 12(1), 1–25. https://doi.org/10.1038/s41598-022-19427-7 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Effects of vermiculite on in-situ thermal behaviour, microstructure, physical and mechanical properties of fired clay bricks. Constr. Build. Mater. 316(January), 125828. https://doi.org/10.1016/j.conbuildmat.2021.125828 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lawanwadeekul, S., Srisuwan, A., Phonphuak, N. & Chindaprasirt, P. Enhancement of porosity and strength of clay brick fired at reduced temperature with the aid of corn cob and waste glass. Constr. Build. Mater. 369(March), 130547. https://doi.org/10.2139/ssrn.4250709 (2023).

    Article 

    Google Scholar
     

  • Gencel, O. et al. Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceram. Int. 47(21), 30425–30438. https://doi.org/10.1016/j.ceramint.2021.07.222 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abdul Kadir, A., Detho, A., Hashim, A. A. & Mat Rozi, N. H. Assessment of thermal conductivity and indoor air quality of fired clay brick incorporated with electroplating sludge. Results Eng. 18(March), 101169. https://doi.org/10.1016/j.rineng.2023.101169 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kurmus, H. & Mohajerani, A. Energy savings, thermal conductivity, micro and macro structural analysis of fired clay bricks incorporating cigarette butts. Constr. Build. Mater. 283(May), 1–8. https://doi.org/10.1016/j.conbuildmat.2021.122755 (2021).

    Article 

    Google Scholar
     

  • Saman, N. S. M., Deraman, R. & Hamzah, M. H. Development of low thermal conductivity brick using rice husk, corn cob and waste tea in clay brick manufacturing. In AIP Conference Proceedings 130007 (AIP Publishing LLC, 2017).


    Google Scholar
     

  • Cultrone, G. & Rosua, F. J. C. Growth of metastable phases during brick firing: Mineralogical and microtextural changes induced by the composition of the raw material and the presence of additives. Appl. Clay Sci. 185, 105419 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heyhat, M. M., Kimiagar, S., Ghanbaryan Sani Gasem Abad, N. & Feyzi, E. Thermal conductivity of reduced graphene oxide by pulse laser in ethylene glycol. Phys. Chem. Res. 4(3), 407–415 (2016).

    CAS 

    Google Scholar
     

  • Yang, J. et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon N. Y. 98, 50–57 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Syukri, S. et al. Synthesis of graphene oxide enriched natural kaolinite clay and its application for biodiesel production. Int. J. Renew. Energy Dev. 10(2), 307 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Mesoporous polymetallic silicate derived from naturally abundant mixed clay: A potential robust adsorbent for removal of cationic dye and antibiotic. Powder Technol. 390, 303–314. https://doi.org/10.1016/j.powtec.2021.05.090 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ajala, M. A., Abdulkareem, A. S., Tijani, J. O. & Kovo, A. S. Adsorptive behaviour of rutile phased Titania nanoparticles supported on acid-modified kaolinite clay for the removal of selected heavy metal ions from mining wastewater. Appl. Water Sci. 12(2), 19 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oscar Mauricio Castellanos, A., Carlos Alberto Ríos, R., Miguel Angel Ramos, G. & Eric Vinicio Plaza, P. A comparative study of mineralogical transformations in fired clays from the laboyos valley, upper Magdalena basin (Olombia). Bol. Geol. 34(1), 43–55 (2012).


    Google Scholar
     

  • Thien, G., How, S., Pandikumar, A., Ming, H. N. & Ngee, L. H. Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci. Rep. 4, 2–9. https://doi.org/10.1038/srep05044 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cheshme Khavar, A. H., Moussavi, G. & Mahjoub, A. R. The preparation of TiO2 @rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: Catalyst characterization and acetaminophen degradation and mineralization. Appl. Surf. Sci. 440, 963–973. https://doi.org/10.1016/j.apsusc.2018.01.238 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, Z. et al. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 58, 140–147 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132(23), 8180–8186 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higazy, M. et al. Analytical study of fuel switching from heavy fuel oil to natural gas in clay brick factories at Arab Abu Saed, Greater Cairo. Sci. Rep. 9(1), 1–10. https://doi.org/10.1038/s41598-019-46587-w (2019).

    Article 
    CAS 

    Google Scholar
     

  • Amkpa, J. A. & Badarulzaman, N. A. Thermal conductivity of Barkin-ladi fireclay brick as refractory lining. IOSR J. Mech. Civ. Eng. 14(2), 1–5 (2017).


    Google Scholar
     

  • Khalil, H. & Al Sawy, S. Integrated biostratigraphy, stage boundaries and paleoclimatology of the upper Cretaceous–lower Eocene successions in Kharga and Dakhala Oases, Western Desert, Egypt. J. Afr. Earth Sci. 96, 220–242 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salman, A. B., Howari, F. M., El-Sankary, M. M., Wali, A. M. & Saleh, M. M. Environmental impact and natural hazards on Kharga Oasis monumental sites, Western Desert of Egypt. J. Afr. Earth Sci. 58(2), 341–353 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Saad, S. I., & Ghazaly, G. Palynological studies in Nubia sandstone from Kharga Oasis. Pollen et Spores (1976).

  • El-Hossary, F. M., Ghitas, A., El-Rahman, A. M. A., Shahat, M. A. & Fawey, M. H. The effective reduction of graphene oxide films using RF oxygen plasma treatment. Vacuum https://doi.org/10.1016/j.vacuum.2021.110158 (2021).

    Article 

    Google Scholar
     

  • Mojović, Z., Banković, P., Milutinović-Nikolić, A., Nedić, B. & Jovanović, D. Co-aluminosilicate based electrodes. Appl. Clay Sci. 48(1–2), 179–184. https://doi.org/10.1016/j.clay.2009.11.022 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, H. et al. Catalytic dehydration of glycerol to acrolein over sulfuric acid-activated montmorillonite catalysts. Appl. Clay Sci. 74, 154–162. https://doi.org/10.1016/j.clay.2012.09.011 (2013).

    Article 
    CAS 

    Google Scholar
     

  • El-Aal, M. A., Said, A. E. A. A., Abdallah, M. H. & Goda, M. N. Modified natural kaolin clay as an active, selective, and stable catalyst for methanol dehydration to dimethyl ether. Sci. Rep. 12(1), 1–13. https://doi.org/10.1038/s41598-022-13349-0 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, C., Tong, D. & Yu, W. Smectite Nanomaterials: Preparation, Properties, and Functional Applications (Elsevier Inc., 2019). https://doi.org/10.1016/B978-0-12-814533-3.00007-7.

    Book 

    Google Scholar
     

  • Wilson, A. J. C. X-ray Metallography by A. Taylor. International Union of Crystallography (1961).

  • Manoratne, C. H., Rosa, S. & Kottegoda, I. R. M. XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite. Mater. Sci. Res. India 14(1), 19–30 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Elgamouz, A., Tijani, N., Shehadi, I., Hasan, K., & Kawam, M.A.-F. Erratum to ‘characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support’ Heliyon 5(8), e02281, Heliyon, 5(12), 2019.

  • Saravanan, D., Veeramuthu, K., Rajan, K. & Kumar, V. Y. FT-IR spectroscopic analysis of archaeological pottery from Arikamedu, Puducherry, India. Phys. Res. 4, 29–31 (2013).


    Google Scholar
     

  • Aghris, S. et al. An electrochemical sensor based on clay/graphene oxide decorated on chitosan gel for the determination of flubendiamide insecticide. Mater. Chem. Phys. 296(September 2022), 127243. https://doi.org/10.1016/j.matchemphys.2022.127243 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Adeniyi, A. G., Abdulkareem, S. A., Odimayomi, K. P., Emenike, E. C. & Iwuozor, K. O. Production of thermally cured polystyrene composite reinforced with aluminium powder and clay. Environ. Chall. 9(August), 100608. https://doi.org/10.1016/j.envc.2022.100608 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Francis, S. M., Stephens, W. E. & Richardson, N. V. X-ray photoelectron and infrared spectroscopies of quartz samples of contrasting toxicity. Environ. Heal. 8(1), 1–4 (2009).


    Google Scholar
     

  • Danner, T., Norden, G. & Justnes, H. Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl. Clay Sci. 162, 391–402 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Syukri, S. et al. Characterisation of calcined raw clays suitable as supplementary cementitious materials. Int. J. Renew. Energy Dev. 162(2), 391–402 (2018).


    Google Scholar
     

  • Rakhila, Y. A., Mestari, S. A. & Elmchaouri, A. Elaboration and characterization of new ceramic material from clay and phosphogypsum. Rasayan J. Chem. 11(4), 1552–1563 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Syntheses of four novel silicate-based nanomaterials from coal gangue for the capture of CO2. Fuel 258(August), 116192. https://doi.org/10.1016/j.fuel.2019.116192 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Querol, X. et al. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal Geol. 75(2), 93–104 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Anwar, A., Liu, X. & Zhang, L. Nano-cementitious composites modified with graphene oxide: A review. Thin-Wall. Struct. 183(October), 110326. https://doi.org/10.1016/j.tws.2022.110326 (2023).

    Article 

    Google Scholar
     

  • Aouba, L., Bories, C., Coutand, M., Perrin, B. & Lemercier, H. Properties of fired clay bricks with incorporated biomasses: cases of olive stone flour and wheat straw residues. Constr. Build. Mater. 102, 7–13 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chitra, Laishram, R., Rajput, S. & Singh, K. C. Particle-size-induced high piezoelectricity in (Ba0.88Ca0.12)(Ti0.94Sn0.06)O3 piezoceramics prepared from nanopowders. J. Alloys Compd. 812, 152128. https://doi.org/10.1016/j.jallcom.2019.152128 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kusiorowski, R. Effect of titanium oxide addition on magnesia refractories. J. Aust. Ceram. Soc. 56(4), 1583–1593 (2020).

    Article 

    Google Scholar
     

  • Cultrone, G. & Sebastián, E. Fly ash addition in clayey materials to improve the quality of solid bricks. Constr. Build. Mater. 23(2), 1178–1184 (2009).

    Article 

    Google Scholar
     

  • Chen, Y., Zhang, Y., Chen, T., Zhao, Y. & Bao, S. Preparation of eco-friendly construction bricks from hematite tailings. Constr. Build. Mater. 25(4), 2107–2111 (2011).

    Article 

    Google Scholar
     

  • Yang, J. Y., Xu, L. H., Hao, H. S. & Yang, S. M. Effect of TiO2 on the thermal conductivity of eco-friendly silica bricks fabricated by yellow river silt. In Materials Science Forum 206–210 (Trans Tech Publ, 2009).


    Google Scholar
     

  • Vermeltfoort, A. T., Martens, D. R. W. & Van Zijl, G. Brick–mortar interface effects on masonry under compression. Can. J. Civ. Eng. 34(11), 1475–1485 (2007).

    Article 

    Google Scholar
     

  • Ahmad, S. Phase evolution and microstructure-property relationship in red clay bricks (University of Peshawar, 2016).


    Google Scholar
     

  • Pan, Y., Wu, T., Bao, H. & Li, L. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym. 83(4), 1908–1915 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K. & Le, T. A. Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. J. Clean. Prod. 375(April), 133939. https://doi.org/10.1016/j.jclepro.2022.133939 (2022).

    Article 

    Google Scholar
     

  • Saafi, M., Tang, L., Fung, J., Rahman, M. & Liggat, J. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem. Concr. Res. 67, 292–299 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Randall, M. Sintering Theory and Practice 209 (Willey, 1996).


    Google Scholar
     

  • Chemani, B. & Chemani, H. Effect of coal on engineering properties in building materials: opportunity to manufacturing insulating bricks. Int. J. Mater. Metall. Eng. 8(8), 805–811 (2014).


    Google Scholar
     

  • Tang, S. et al. Effective reduction of graphene oxide via a hybrid microwave heating method by using mildly reduced graphene oxide as a susceptor. Appl. Surf. Sci. 473, 222–229 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • El-Hossary, F. M. et al. Cold RF oxygen plasma treatment of graphene oxide films. J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-021-06123-x (2021).

    Article 

    Google Scholar
     

  • Baraket, M. et al. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon N. Y. 48(12), 3382–3390 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kondratowicz, I. et al. Tailoring properties of reduced graphene oxide by oxygen plasma treatment. Appl. Surf. Sci. 440, 651–659 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Romero-Borja, D. et al. Organic solar cells based on graphene derivatives and eutectic alloys vacuum-free deposited as top electrodes. Carbon N. Y. 134, 301–309. https://doi.org/10.1016/j.carbon.2018.03.083 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Thermal behaviours of clay mixtures during brick firing: A combined study of in-situ XRD, TGA and thermal dilatometry. Constr. Build. Mater. 299(September), 1–7. https://doi.org/10.1016/j.conbuildmat.2021.124319 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shahat, M. A., Ahmed, Y. M. Z., Ghitas, A., El-Shater, A. & Soliman, W. Improving the thermophysical aspects of innovative clay brick composites for sustainable development via TiO2 and rGO nanosheets. Constr. Build. Mater. 401, 132981 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, S., Iqbal, Y. & Muhammad, R. Effects of coal and wheat husk additives on the physical, thermal and mechanical properties of clay bricks. Boletín la Soc Española Cerámica y Vidr. 56(3), 131–138 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mahnicka-Goremikina, L. et al. Thermal properties of porous mullite ceramics modified with microsized ZrO2 and WO3. Materials (Basel) 15(22), 7935. https://doi.org/10.3390/ma15227935 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaine, R. L. In search of thermal effusivity reference materials. J. Therm. Anal. Calorim. 132(2), 1419–1422 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mohammed, A., Sanjayan, J. G., Duan, W. H. & Nazari, A. Incorporating graphene oxide in cement composites: A study of transport properties. Constr. Build. Mater. 84, 341–347 (2015).

    Article 

    Google Scholar
     

  • Kong, D., Huang, S., Corr, D., Yang, Y. & Shah, S. P. Whether do nano-particles act as nucleation sites for C–S–H gel growth during cement hydration?. Cem. Concr. Compos. 87, 98–109. https://doi.org/10.1016/j.cemconcomp.2017.12.007 (2018).

    Article 
    CAS 

    Google Scholar
     

  • ASTM C177–19. Standard test methods for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus. ASTM International. https://doi.org/10.1520/C0177-19 (2019).

  • Reference

    Denial of responsibility! Samachar Central is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment